SQL: Perform statistics at different granularities based on the time span of the data

A certain view in MS SQL will generate data with different time spans. When the time span is less than 30 days:

id

branchId

totalPrice

createdAt

85

1

2718.66

2022-07-03 08:49:27.727

26

1

3832.69

2022-07-06 09:08:06.880

89

1

9569.85

2022-07-07 04:13:09.230

80

1

1523.62

2022-07-07 04:38:29.313

15

1

2500.21

2022-07-11 09:01:05.183

5

1

6874.03

2022-07-14 23:54:05.590

45

1

9188.03

2022-07-17 05:35:48.560

98

1

4426.17

2022-07-21 17:35:31.617

54

1

3862.86

2022-07-22 05:18:28.553

70

1

5668.82

2022-07-22 06:12:33.867

65

1

3653.67

2022-07-26 08:29:03.587

Grouping by branchId and day is required, and the total price should be summed up as follows:

branchId

sumTotalPrice

timeFrame

1

2718.66

2022-07-03

1

3832.69

2022-07-06

1

11093.47

2022-07-07

1

2500.21

2022-07-11

1

6874.03

2022-07-14

1

9188.03

2022-07-17

1

4426.17

2022-07-21

1

9531.68

2022-07-22

1

3653.67

2022-07-26

When the time span is greater than or equal to 30 days and less than 365 days:

id

branchId

totalPrice

createdAt

52

4

7502.97

2023-11-01 17:49:51.110

56

4

7337.75

2023-11-06 15:38:57.567

44

4

9385.97

2024-01-18 11:19:04.460

Then group by branchId and month, and sum up the total price. Note: The format remains unchanged, and the output time field is taken as the first day of the current month.

branchId

sumTotalPrice

timeFrame

4

14840.72

2023-11-01

4

9385.97

2024-01-01

When the time span is greater than or equal to 365 days:

id

branchId

totalPrice

createdAt

22

2

5589.39

2020-05-23 15:22:14.703

46

2

6103.08

2020-08-18 03:58:14.973

48

2

4905.96

2020-10-14 23:57:48.680

85

2

8953.03

2021-08-15 11:16:34.627

6

2

8132.46

2021-08-26 21:27:21.627

53

2

1913.24

2021-09-20 17:41:13.793

4

2

3164.81

2022-03-18 04:24:40.840

28

2

3506.16

2022-05-20 17:48:44.330

37

2

7256.73

2022-07-25 20:45:16.497

16

2

7470.38

2023-01-22 18:33:07.163

27

2

5957.58

2023-03-22 03:04:02.687

99

2

7722.43

2023-04-14 21:22:38.160

81

2

4517.39

2023-04-25 11:25:17.900

70

2

5562.04

2023-05-10 08:19:35.200

55

2

9343.17

2023-11-17 08:56:09.870

94

2

1056.38

2024-01-03 18:36:24.743

47

2

8434.11

2024-03-23 09:07:31.743

Group by branchId and year, also sum up the total price. Note: The time field is taken as the first day of the current year.

branchId

sumTotalPrice

timeFrame

2

16598.43

2020-01-01

2

18998.73

2021-01-01

2

13927.7

2022-01-01

2

40572.99

2023-01-01

2

9490.49

2024-01-01

SPL code:


 A

1

=MSSQL.query("select * from tb”)

2

=interval(A1.min(date(createdAt)),A1.max(date(createdAt)))

3

=A1.groups(branchId,

date(createdAt,if(A2>=356:"yyyy",A2<30: "yyyy-MM-dd";"yyyy-MM")):timeFrame;

sum(totalPrice):sumTotalPrice)

4

=A3.new(#1,#3,#2)

A1: Query the view through JDBC.

A2: Calculate the time span.

A3: Group and aggregate. When the span is greater than 365 days, the time format mask is yyyy; When the span is less than 30 days, the mask is yyyy-MM-dd, and for other spans, it is set to yyyy-MM. The date function returns the first day of the current year for the yyyy mask time string and the first day of the current month for the yyyy-MM mask time string.

A4: Adjust the field order to meet formatting requirements.

Problem sourcehttps://stackoverflow.com/questions/78390673/select-and-group-results-by-dynamic-date